Tampilkan postingan dengan label cage. Tampilkan semua postingan
Tampilkan postingan dengan label cage. Tampilkan semua postingan

Selasa, 03 Mei 2016



Quality of life for the planet


Need for high quality water and other resources


Clean water is the primary pre-requisite to successful aquaculture. A clean environment is therefore critical for its commercial success. Any environmental impact that would compromise the quality of the water used on fish farms must be monitored and minimised through appropriate siting (choice of locations) of farms and production processes.

 In recent years, the development of aquaculture has raised some associated environmental concerns. Like any farming operation on land, fish farm cages produce waste materials. These fall into three categories - uneaten feed, fish faeces and dead fish. Most of the environmental impacts of aquaculture can be managed and minimised through understanding of the processes involved, responsible management and the effective siting of farms.

 Uneaten feed - Should uneaten feed reach the bottom of a cage, processes that break it down can reduce the amount of oxygen in the sediment. In severe cases, oxygen levels in the water above may also decrease, creating "anoxic" conditions in which only a few animal species can survive. Should the feed contain antibiotics used to treat the farmed fish above, bacteria in the sediment and the natural breakdown of waste material might be affected.

In practice, fish farmers do everything they can to prevent such a situation, since the cost of fish feed amounts up to 40 percent of the total production cost. Feed reaching the sediment is lost, and it is in the farmers interest to minimise such waste. On well-managed farms, feeding is carefully regulated to ensure that the maximum amount of food is taken up directly by the fish and farmers aim to ensure that less than 5 percent of the feed is wasted. To improve uptake by fish, feed pellets are manufactured to either float or to sink slowly through the water.

Fish faeces - Unlike land animals, fish do not generally produce compact solid faecal material and more often excrete a loose cloud of faecal material that is easily dispersed by water currents. In still conditions, however, faecal material can build up beneath fish cages. It is, however, not in the farmers interest to let this happen, since the buildup of faecal material can lead to anoxic conditions which affect the fish above. Fish farmers wanting to ensure the health of their fish will frequently check the bottom below their fish cages to ensure that faecal material is not building up. In addition, in many EU Member States, the government employs diving teams to carry out inspections.
If faecal build-up is observed, farmers will be advised to move their cages, allowing the bottom to recuperate for a short period, however full recovery typically takes between three to ten years. In recent years, improved feed formulations have also been introduced that fish digest more efficiently, producing less waste.

Fish farmers generally avoid overly sheltered and stagnant sites, preferring areas that contain a healthy flow of water through the cages. Such flows disperse fish faeces so it can enter the natural food chain.

Dead fish - Dead fish are a loss to the farmer and a potential health hazard to the stock as well as a source of pollution. Fish farmers will, at all times, endeavour to minimise the number of dead fish on their farms and to remove such mortalities where they occur.

Fish farms are required to report significant fish deaths when they occur and are inspected by state agencies at least twice a year.

Shellfish cultivation

Shellfish such as oysters, mussels and clams are filter feeders and take their food directly from the water in which they live. This means that they do not require supplementary food and, if anything, actually improve the quality and clarity of the water. Shellfish farming can only provide the best quality products if practiced in pristine environments with the highest water quality.

Environmental problems can arise on shellfish farms where the animals are held at overly high densities, leading to depletion of food in the water and build-up of faeces below the holding areas. Both effects will harm the outcome for the farmer and hence shellfish farms are generally sited where water exchange is high and the stock is kept at densities that are compatible with the level of water exchange. In many cases, stocking densities on farms are lower than those of clusters of shellfish (e.g. mussels) that occur on natural beds.

Shellfish farms have been thought to disturb wildlife habitats by taking up space on a beach where wading birds feed. It has been shown, however, that wading birds and oyster farms can exist side by side. The fallen oyster or mussel can have a positive impact on a birds feeding pattern.

Other potential impacts include the importation of parasites, pests and diseases onto the shellfish farm which would then spread to other areas. The microscopic oyster parasite Bonamia ostrea, for example, gradually spread through Europe with the spread of oyster farming. Oyster farmers have responded by significantly reducing the density at which their shellfish are farmed.

Some people complain of "visual pollution" caused by large numbers of floating barrels or shellfish trestles in otherwise unspoilt areas. Low-profile and dark-coloured floats have recently been developed to minimise the visual impact.

Pond fish farming

Fish pond systems represent the oldest fish farming activity in Europe, at least dating back to medieval times. Ponds were built in areas where water supply was available and the soil was not suitable for agriculture. The wetlands of Central and Eastern Europe are good examples of this. The total European production from pond farming is approximately 475,000 tonnes. About half of this production is cyprinid fish, such as common carp, silver carp and bighead carp. The main producer countries are the Russian Federation, Poland, Czech Republic, Germany, Ukraine and Hungary.


pondfarming_600.jpg

Typical fish ponds are earthen enclosures in which the fish live in a natural-like environment, feeding on the natural food growing in the pond itself from sunlight and nutrients available in the pond water.

In order to reach higher yields, farmers today introduce nutrients into the pond such as organic manure. This is accompanied by stocking of fingerlings and by water being flushed through the pond. Fish pond production, however, remains ‘extensive or ‘semi-intensive (with supplementary feeding) in most countries, where semi-static freshwater systems play an important role in aquaculture. Chemicals and therapeutics are not usually used in such ponds. Hence the main environmental issue is the use of organic fertilisers, which may cause eutrophication in the surrounding natural waters. The use of organic fertilisers is regulated at national levels.

Extensive fish ponds are usually surrounded by reed belts and natural vegetation, thus providing important habitats for flora and fauna. They play a growing role in rural tourism. Many pond fish farms have been turned into multifunctional fish farms, where various other services are provided for recreation, maintenance of biodiversity and improvement of water management.

In areas where water is scarce, some farm systems recirculate, treat and re-use their water. Such systems are generally self-contained and therefore pose little threat to the environment. Solid waste material produced in such systems is rich in organic compounds and often used as a fertilizer elsewhere. Alternatively, new hydroponic systems have been developed to grow vegetables and other food crops in the nutrient-enriched water. There is much interest in these systems, but their economic viability remains challenging.

Trout farming in flow-through systems

 The most widely-practiced form of inland aquaculture in Europe is trout farming. Water is taken from the river, circulated through the farm and treated before being released downstream. All water in the farm is renewed at least once per day. Where more than one farm exists on the same river, it is in everyones interests that the quality of the outflowing water from one farm is good, as this then becomes the inflowing water for the next farm. Other water sources include spring water or drilled and pumped ground water. In some countries, heated industrial water sources (such as electricity generating plants) are used to increase the water temperature (by heat exchange)
used in the farm, thereby saving energy costs to heat the water. Geothermal water also provides naturally warmed water, thus allowing the farming of new fresh water species (especially eel, sturgeon, perch and tilapia) with low environmental impact.


trout farm


Recirculation Aquaculture Systems


Recirculation Aquaculture Systems (RAS) are land-based systems in which water is re-used after mechanical and biological treatment so as to reduce the needs for water and energy and the emission of nutrients to the environment. These systems present several advantages such as: water and energy saving, a rigorous control of water quality, low environmental impacts, high biosecurity levels and an easier control of waste production as compared to other production systems. The main disadvantages are high capital costs, high operational costs, requirements for very careful management (and thus highly skilled labour forces) and difficulties in treating disease. RAS is still a
small fraction of Europes aquaculture production and has its main relevance in The Netherlands and Denmark. The main species produced in RAS are catfish and eel but other species are already being produced using this type of technology such as turbot, sea bass, pikeperch, tilapia and sole.

recirculation


Other environmental impacts of fish farming - the case of escaped fish

It is inevitable that fish farmed in net pens in either fresh or salt water will sometimes escape into the wild. In some cases, there will be a small but steady release of fish. Sometimes, large numbers will escape due to severe damage to the net pen by way of storms, predator attacks or vandalism.

 There has been vigorous debate on the potential impact of escaped farmed fish, in particular salmon, on wild populations. On the one hand, it has been suggested that escaped farmed salmon could compete for living space, breeding partners and food resources, spread disease, or interbreed with wild fish, causing "genetic pollution" and thereby weakening the wild strain and reducing its ability to survive . On the other hand, scientists have argued that farmed salmon, which are bred for fast growth in perfect conditions, are less able to compete for food, territory and mate in the wild than their wild colleagues. Therefore, a limited escape of farmed fish would be unlikely to have a serious effect on wild fish populations. Only if very large numbers of fish escape into a small area, would interbreeding occur and the fitness of the local population potentially be reduced.

 In its Aquaculture Europe 2005 conference, the European Aquaculture Society invited the North Atlantic Salmon Conservation Organisation (NASCO) to hold a special workshop on the interactions between wild and farmed salmon. The summary report of this event "Wild and Farmed Salmon - Working Together" drew the following main conclusions:

Through the use of single bay management, single generation sites and synchronised fallowing, real progress is being made in relation to minimising impacts of diseases and parasites, which are key issues for wild fish interests. The development of third-party audited containment management systems may represent a significant step forward. The liaison group should look more at the possibilities of rearing all-female triploid salmon, which could eliminate genetic interaction with the wild stocks, but which need to be balanced by the production cost of these fish, as well as consumer resistance to what could be seen as genetic manipulation.

Restoration programmes can benefit from fish farmers expertise, but habitat protection and restoration have equal or greater importance in species restoration than stocking programmes alone.

CCRES AQUAPONICS
part of NGO
CROATIAN CENTER of RENEWABLE ENERGY SOURCES (CCRES)
Read More..

Jumat, 29 April 2016



Fish farming can contribute to the protection and restoration of endangered fish populations living in the wild through the efficient provision of juveniles for release or stocking.
An increasing number of fish are finding their way onto the CITES lists of endangered species. The production of juvenile fish and shellfish in hatcheries is far more efficient (in terms of survival) than in the wild. These juveniles may not only be grown on as food, but also for the conservation and restoration of fish populations (through release or restocking) and the provision of fish for angling.

This technique, also known as "stock enhancement" or "enhancement aquaculture" has an economic advantage in that production costs are much lower, and has proven to be successful for a variety of marine fish species, mainly in Norway, Japan and the USA.

Sturgeons are among the worlds most valuable wildlife resources and can be found in large river systems, lakes, coastal waters and inner seas throughout the northern hemisphere. For people around the world, caviar, i.e. unfertilized sturgeon roe, is a delicacy. Sturgeons are also a major source of income and employment, as well as an important element of the local food supply. Current trends in illegal harvest and trade put all these benefits at risk. Since 1998, international trade in all species of sturgeons has been regulated under CITES owing to concerns over the impact of unsustainable harvesting of and illegal trade in sturgeon populations in the wild.

Sturgeon

Photo: Juvenile sturgeon for restocking.
Source Aquaculture Europe Vol 32 (3). September 2007. Courtesy M. Chebanov.

The Ramsar Declaration on Global Sturgeon Conservation recognises the importance of aquaculture in the preservation of sturgeon species, specifically mentioning the importance of captive broodstock programmes to prevent loss of genetic variety; the monitoring of stocked juvenile fish to assess the cost-effectiveness of stocking strategies; the cultivation of sturgeon for meat and caviar products - especially with due involvement of the lowincome local fishing community who need alternative livelihoods; and the need for internationally agreed standards on culture technology and general husbandry, adequate nutrition, disease prevention and product quality control.

More information is available at www.wscs.info - the site of the World Sturgeon Conservation Society.

Different trout species have been restocked in Europes rivers for decades. Prior to the Second World War, the UK production of trout juveniles was exclusively to stock rivers in England and Scotland to support natural populations and for recreational fishing. It was only in the 1950s that technology was introduced to produce fish for the table. This is the case across much of Europe, where trout remains the top aquaculture production species within European Member States, and where restocking accounts for a significant proportion of total trout fry production.

restocknivelleriver_600.jpg

Photo showing 2007 re-population in the river Nivelle in the Basque region of France.
Photo courtesy of Dr. Jacques Dumas, INRA.



CCRES AQUAPONICS
project of NGO
CROATIAN CENTER of RENEWABLE ENERGY SOURCES 
Read More..

Minggu, 17 April 2016

Photo via CCRES AQUAPONICS


The Chinampas of Mexico

Chinampa is a method of ancient Mesoamerican agriculture which used small, rectangle-shaped areas of fertile arable land to grow crops on the shallow lake beds in the Valley of Mexico.

 

Foto via Anthony Morgan and his blog at: bcr-8history.blogspot.com


Mexico City, a thriving metropolis of 20 million, is built on and around the ancient Aztec city of Tenochtitlan.  Founded in 1325, this city was at its greatest a sophisticated and technologically-advanced city of 200,000 inhabitants nestled in the valley of Mexico and surrounded by a series of connected lakes.

The market district, Tlateloco was estimated by Spanish explorer Bernal Diaz del Castillo to be twice the size of Seville and bustling with over 60,000 shoppers and traders. The produce and goods for this market and several others in the city came mostly from the intricate and efficiently irrigated gardens created by the Aztecs in the shallow lakes surrounding the city.  These gardens, called chinampas , were artificial island plots of 30 x 2.5-3 meters.  These “floating gardens”  produced 3 crops a year and grew at least a half to two-thirds of the food consumed by the 200,000 residents of Tenochtitlan.

  
Foto via Anthony Morgan and his blog at: bcr-8history.blogspot.com

 The earliest fields that have been securely dated are from the Middle Postclassic period, 1150 – 1350 CE. Chinampas were used primarily in Lakes Xochimilco and Chalco near the springs that lined the south shore of those lakes. The Aztecs not only conducted military campaigns to obtain control over these regions but, according to some researchers, undertook significant state-led efforts to increase their extent.[4] Chinampa farms also ringed Tenochtitlán, the Aztec capital, which was considerably enlarged over time. Smaller-scale farms have also been identified near the island-city of Xaltocan and on the east side of Lake Texcoco. With the destruction of the dams and sluice gates during the Spanish conquest of Mexico, many chinampas fields were abandoned, although remnants are still in use today in what remains of Lake Xochimilco.

Among the crops grown on chinampas were maize, beans, squash, amaranth, tomatoes, chili peppers, and flowers.[5] It is estimated that food provided by chinampas made up one-half to two-thirds of the food consumed by the city of Tenochtitlán. Chinampas were fertilized using lake sediments as well as human excrement.

 Irrigated by the surrounding lake water, the chinampas were fertilized by digging up the nutrient-rich mud from the bottom of the canals and also by using human waste from the city itself.  In this way, Tenochtitlan was able to better fertilize its crops while treating its wastewater? creating a healthier living environment for all. Crops were easily transported to market along the many canals and lakes surrounding the chinampas.  When the Spaniards arrived it did not take them long to dimantle the complex system and put in place traditional monocropping.  Today, some chinampas survive in the Xochimilo area close to Mexico City.  They are cared for in the traditional way and create both food and an opportunity for a healthy tourist industry.  Mexico city is currently trying to create a waste-water treatment system incorporating the use of chinampas similar to the ones used by the Aztecs so long ago.


  Foto via Wikipedia

 More information on the chinampas of Mexico. 

 CCRES special thanks to Anthony Morgan and his blog at: bcr-8history.blogspot.com.

CCRES AQUAPONICS
 part of 
CROATIAN CENTER of  RENEWABLE ENERGY SOURCES (CCRES)
Read More..

Sabtu, 16 April 2016

Hen Boele and Marco Brocken, the founders of Evodos, explain the advantages of the Evodos separation technology. 
Examples are given on the robustness of the Evodos machines combined with its high effectiveness.
 They make clear how you can try Evodos at your own premises during 4 months for a net cost of only 6.0000 euro. 
CROATIAN CENTER of RENEWABLE ENERGY SOURCES (CCRES)
More info www.evodos.eu or info@evodos.eu
Read More..

Kamis, 31 Maret 2016

CCRES AQUAPONICS





An overview of fish farming cage systems.

CCRES AQUAPONICS
Read More..

Senin, 21 Maret 2016


An instructional video about fish farming.
 The program covers the recommended practices and guidelines for starting a successful cage culture operation. The video was supported by Purdue Extension, RMA, & Sea Grant Illinois-Indiana.
Read More..

Minggu, 20 Maret 2016

CCRES AQUAPONICS

Aquaculture produces safe,high-quality food

Just as with wild-caught fish, farmed seafood represents an excellent source of nutrients important for human health. There is hard evidence that regular consumption of fish lowers the risk of coronary heart diseases because of high concentrations of omega-3 poly unsaturated fatty acids. Other important nutrients in farmed fish are vitamins A and D for maintaining healthy bones, eyes and skin. Farmed fish is also a rich source for iodine, important for the proper functioning of the thyroid gland, and selenium, which is an important anti-oxidant.

How rich is farmed finfish?
Because farmed fish and shellfish are produced under controlled conditions, it is possible to maintain the highest quality standards from the egg to the plate. In the same way that business processes may be certified to meet standards (e.g. ISO), aquaculture production also has certification schemes. They are increasingly supported by various codes (of conduct and of good practice), developed at national and European levels.
Production of fish and shellfish on farms allows for consistent and even enhanced levels of the elements in seafood that do us good. For example, the level and balance of omega fatty acids, vitamins and minerals such as iodine and selenium can all be influenced through specially designed fish feeds.
What are the health benefits of seafood?
Much of the importance of fish in health has come from research into long-chain polyunsaturated fatty acids (PUFA) of the n-3 family. Other abbreviations used are omega-3 and n-3 fats. Fish is a rich source of two important PUFA: eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). PUFA are present in both wild and farmed fish. DHA and EPA are found in abundance in the flesh of oil-rich fish but they are also present in lean fish.
The effect of PUFA on coronary heart disease has been extensively studied. The human body cannot make PUFA. There is strong evidence from many scientific studies that PUFAs from fish play a major role in protection against heart disease. PUFAs may also help prevent other illnesses, such as arthritis, Alzheimer’s disease, some types of cancer and asthma. Extensive research to confirm these relationships is ongoing.
How much seafood should we eat?
Different values exist in the scientific literature for what is the “ideal” daily or weekly intake of EPA and DHA for human health. Government advice varies considerably between countries. However, as a general rule, a healthy diet is generally assumed to include 1-2 fish per week, especially fatty fish.
The International Society for the Study of Fatty Acids and Lipids (ISSFAL) suggests an uptake of 500 mg of EPA + DHA per day or 3.5 g per week provides enhanced cardiac health in adults.
In its 2004 report “Advice on Fish Consumption – Benefits and Risks”, the UK Scientific Advisory Committee on Nutrition (SACN) concluded that the majority of the UK population does not consume enough fish, particularly oily fish, and should be encouraged to increase consumption. The Inter-Committee Subgroup endorsed the Committee on Medical Aspects of Food Policy (COMA) 1994 population guideline recommendation that people should eat at least two portions of fish a week, of which one should be oily. Consumption of this amount would probably confer significant public health benefits to the UK population in terms of reducing cardiovascular disease (CVD) risk and may also have beneficial effects on foetal development.
Current advice from the UK Food Standards Agency suggests a weekly intake of up to four 140g portions of oily fish for men, boys and women over reproductive age, with the caveat that girls and women of reproductive age should only consume two portions of oily fish per week2.
Safe seafood products
Because it is a controlled food production process, fish farming can include safeguards to protect its product from contamination. Ironically, the main source of contaminants in farmed fish (such as trace amounts of dioxins, PCBs and mercury) is fish feed composed of wild fish. However, because this food can be sampled and analysed prior to feeding, maximum limits of contaminants in fishmeal and fish oil used in aquaculture have been established by international law.
Photo: Courtesy of Vidar VassvikData from the official controls of the fish feed ingredients and analysis of the farmed fish itself are available for consumers, authorities and industry alike.
Strategies to minimise contamination of farmed fish by way of feed derived from the wild are in place and can include; careful selection of the fish oil source, purification of fish oil prior to its inclusion in fish feed, and partial replacement of fish oil by vegetable oils.
A number of factors have combined to make us more aware than ever of the safety of food. Firstly, increasingly accurate measuring techniques allow us to detect even the lowest levels of contaminants. Secondly, increasing media focus on food safety has highlighted issues such as BSE, dioxins and salmonella, and ‘food scares’ have become regular features of news broadcasts. For food to be acceptable, it must be proven to be safe to eat.
Food safety standards have been developed giving clinically proven safe levels of food constituents that may at higher levels provide a risk to health.
Contaminants and health risks

The European Food Safety Authority (EFSA)
Contaminants in fish derive predominantly from their diet. Whilst it is not possible to control the diet of wild fish, the levels of contaminants and some nutrients in farmed fish may be modified by altering their feed.
Strict EU regulations (e.g. Directive2002/32/EC) and controls by food
safety authorities ensure that contaminants are kept well below dangerous
levels in farmed fish. Emerging technologies allow fish feed producers to
purify fish meal and oil before it is incorporated in the feed.
 The retention of dietary mercury by fish is dependent on dietary concentration and the duration of exposure to the contaminant. Methylmercury (the toxic form of mercury in fish) is present in higher amounts in large predatory fish such as swordfish and tuna. High consumers of such top predatory species, such as pike or tuna (especially fresh or frozen bluefin or albacore tuna), may exceed the provisionally tolerable weekly intake (PTWI) of methylmercury.
The greatest susceptibility to the critical contaminants (methylmercury and the dioxin-like compounds) occurs during early human development. For a developing human foetus, this means that the risk comes from the amount of these compounds in the mother’s body.
Furthermore, EU maximum limits exist for a range of contaminants in food such as dioxins, dioxin-like PCBs, mercury, lead, cadmium and polyaromatic hydrocarbons (the maximum level is for one PAH, BaP). These limits include food of farm origin and other foods such as fish from capture fisheries.
Monitoring programmes exist to document the levels of contaminants in wild and farmed fish to fulfil a need for independent data for consumers, food authorities, fisheries authorities, industry and markets.
Traceability
As in land farming, fish farming benefits from traceability technologies to monitor and follow the production cycle through its entirety. While traceability itself is not a guarantee of safety, it is essential in pinpointing problems, should they occur, throughout the whole production chain. This is not just limited to producers, but encompasses their suppliers, processors and distributors. Such “full chain traceability” is most effective when all links in the chain have the same principles and use the same (or at least compatible) tools.
In 2002, an EU-funded concerted action initiative called “TraceFish” (www.tracefish.org) produced three consensusbased standards for the recording and exchange of traceability information in the seafood chains.
One of these is a standard for farmed fish. The basic element in the system is a unique identification number to be placed on each lot of products in such a way that traceability can be transmitted electronically. The system is voluntary.
Traceability tools are being continuously improved and are major monitoring components of various labelling and certification schemes for aquaculture products.
An example of this is the TRACE initiative (www.trace.eu) that is using 5 case studies in food to improve traceability parameters and measure food authenticity. This last point has specific interest for fish products and TRACE is developing generic low cost analytical tools for use in the traceability infrastructure that verify geographical origin, production origin and species origin.
Affordable seafood products
As fish species become scarcer in the oceans, they will become less affordable to consumers.
All of the approximately thirty species of fish in European aquaculture production have shown a decrease in farm gate price as their production volume has increased, while improvements in production techniques have resulted in ever-increasing quality.
figure4.jpg
Figure 5: EU production and price trends – for several aquaculture species produced in Europe.
Data from FAO FishStat 2006. Note prices in US Dollars.
Atlantic salmon and rainbow trout are almost exclusively farmed. They are now comparable in price to land farmed produce such as chicken and pork.
The availability of ‘new’ farmed species (sea bass, sea bream, cod, sole, scallops, octopus etc.) has the potential to provide this increase in affordability to all consumers.
Quality of life of aquatic animals
Health

Medicine and chemical residues are tightly regulated
Infectious diseases are encountered in all food production. Fish and shellfish may be more under threat from disease than land animals or plants because germs survive longer and can spread more effectively in water. The rapid identification and treatment of bacterial and viral infection is therefore crucial in aquaculture. While best management practice remains the preferred option for producers, the use of therapeutic agents may sometimes be necessary.
National and international regulations have been implemented to approve veterinary medicines that do not compromise food safety. An example of this is the so-called ‘withdrawal period’, defined as the minimum time to elapse between termination of the treatment and harvest of the animal. Withdrawal periods are specific for each drug and each utilisation of that drug, for example to treat bacterial disease.
It is important to note that the use of veterinary medicines such as antibiotics has greatly decreased in many types of aquaculture. For example, in Norway the use of antibiotics in salmon and trout farming has been negligible for the last 10 years due to the use of better vaccines. In 2004, Norway produced 23 times more salmon and trout than in 1985; in the same period, the use of antibiotics dropped by a factor of 25.
figure6.jpg
Figure 6: Antibiotics used in Norwegian farming of trout and salmon 1980-2004.
Science may provide the key to control sea lice
The principal challenges in aquaculture are now related to viruses and parasites. For example, “sea lice” threaten farmed salmon in temperate waters. However, non-medicinal and environmentally friendly lice treatments are being developed. In Norway, for example, wrasse, another fish, is used to eat the lice from infected salmon.
With the adoption of tighter laws and regulations, and with the difficulties of drug companies registering new treatments for aquaculture, the availability of medicines to treat aquaculture species becomes increasingly unsure. More and more, research is therefore turning towards prophylaxis as a solution.
Parasites are common in wild fish, too
Parasites are not unique to farmed fish, but in the wild they obviously go untreated. Parasites fall into two main groups – ectoparasites, which affect the skin and external organs, and endoparasites, which invade the body and attack the musculature and internal organs.
Ectoparasites include several types of sea lice, crablike creatures that eat the skin and flesh of the fish. If left untreated, they will cause considerable suffering to the fish and open wounds on the skin of the fish that may become sites for disease.
Endoparasites include nematode worms that enter the body of the fish through the mouth, infest the gut and can then burrow into the flesh of the fish. As well as reducing the fish’s ability to regulate the amount of salt in its body by perforating the gut membrane, they also reduce the saleability of the flesh, since fish infested with nematode parasites are not saleable for human consumption.
As on land-based farms, when animals are held at higher densities parasites can infect a stock relatively rapidly. Because unhealthy fish mean substantial loss to the farmer, however, it is uncommon in modern fish farms to find harmful burdens of parasites. Outbreaks are controlled by modern farming practices and the use of medicines that authorities have deemed safe to the fish, to consumers and to the environment.
(1) Simopoulos, A.P. “Essential Fatty Acids in Health and Chronic Disease”. Am J Clin Nutr 2000; 71 (suppl): 5065-95.
CCRES AQUAPONICS
part of NGO
Croatian Center of Renewable Energy Sources (CCRES)
Read More..