Tampilkan postingan dengan label dioxide. Tampilkan semua postingan
Tampilkan postingan dengan label dioxide. Tampilkan semua postingan

Senin, 18 April 2016







Algae omega-3 fatty acids provide significant health and development benefits during life in the womb. Health and cognitive benefits for omega-3s continue throughout life.

Omega-3 oils
Omega-3 oils
 Essential fatty acids are fatty acids critical to the good health and development of fetuses and newborns. Fetal life and early infancy are the periods of rapid brain, eyes, heart, respiratory, central nervous system, and immune system development and maturation. Omega-3s enhance these growth phases and help children avoid major organ disorders. Newborns may get omega-3 fatty acids from mother’s milk, (if the mother absorbs omega-3s in her diet), from the child’s diet, or from supplements.
Neither humans nor animals can synthesize omega-3 oils because bodies lack the desaturase enzymes required for their production. Therefore, if the mother’s diet is deficient in omega-3s, the infant will not benefit from the essential early growth and development support from long chain fatty acids.

Omega-3s improve Neuron Signaling

Omega-3s improve Neuron Signaling

Omega-3 oils Omega-3s improve Neuron Signaling
Clinical signs of essential fatty acid deficiency include a dry scaly rash, decreased growth in infants and children, slow or abnormal brain, eye and heart development, increased susceptibility to infection and poor wound healing. Fatty acid deficiency causes pathologies similar to malnutrition.
Most foods contain some fat, even vegetables, because fats play a critical role in metabolism. Fat provides a reliable source of energy as well as an effective depot for stored energy. Fats play an important role in cell membranes, helping to govern nutrients that enter and exit cells during metabolism. When incorporated into phospholipids, fatty acids affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane bound enzymes.
Research shows that omega-3 fatty acids reduce inflammation and may help lower risk of chronic diseases such as heart disease, cancer, and arthritis. Omega-3s are highly concentrated in the brain and appear to be important for cognitive (brain memory and performance) and behavioral function. Studies have shown that infants who do not get enough omega-3 fatty acids from their mothers during pregnancy are at risk for developing vision, brain and nerve problems. Symptoms of omega-3 fatty acid deficiency include fatigue, poor memory, dry skin, heart problems, mood swings or depression, and poor circulation.
In a recent study, prenatal algal DHA supplementation – 600 mg DHA taken from 14 weeks gestation until delivery – increased DHA blood levels in both the mother and the newborn, as well as increased infant birth weight, length, and head circumference. The DHA supplements improved fetus growth and organ development significantly. Other studies have found that prenatal DHA deficiency may limit infants’ development potential.
The DHA Intake and Measurement of Neural Development (DIAMOND) study found that supplementation with DHA and ARA omega fatty acids from 18 months to six years of age provided significant cognitive benefits. DIAMOND also found that DHA supplementation provided developmental benefits evident to six years of age.
Algae polyphenol extracts have anti-diabetic effects through the modulation of glucose-induced oxidative stress. The extracts slow starch-digestive enzymes such as alpha-amylase and alpha-glucosidase.  The plentiful soluble dietary fibers in algae help avoid obesity and diabetes. The total fiber content of several algae species, (~6 g/100g), is greater than that of fruits and vegetables promoted today for their fiber content: prunes (2.4 g), cabbage (2.9 g), apples (2.0 g), and brown rice (3.8 g).
The body uses cholesterol as the starting point to make estrogen, testosterone, vitamin D, and other vital compounds. Fats also serve as biologically active molecules that influence how muscles respond to insulin. Various forms of fats, especially Omega-3s, can accelerate or cool down inflammation.

EPA and DHA

Long chained polyunsaturated fatty acids, (PUFA) eicosapentaenoic acid, EPA, and docosahexaenoic acid, DHA, manage and moderate inflammation and many other cellular functions. These fats influence signaling in cells and the brain and therefore affect mood and behavior.
The US National Institute of Health’s MedlinePlus lists many medical conditions for which EPA alone, or in concert with other omega-3 sources, is known or thought to be an effective treatment. Most medical interventions derive from omega-3 oils’ ability to lower inflammation or enhance cell signaling.
(Left) Anchovy harvested for Fish Oil, (Right) Algae with Omega-3
(Left) Anchovy harvested for Fish Oil, (Right) Algae with Omega-3
Omega-3s are often obtained in the human diet by eating oily fish or fish oil— e.g., cod liver, herring, mackerel, salmon, menhaden and sardine. It is also found in human breast milk. Fish do not synthesize Omega-3s, but concentrate it from the algae they consume. Omega-3 rich microalgae are cultivated as a commercial source by a few companies such as Martek and Algae Biosciences. Microalgae, and supplements derived from algae, are excellent sources of EPA and DHA, since fish often contain toxins such as mercury and pesticides due to pollution.
DHA comprises 40% of the polyunsaturated fatty acids (PUFAs) in the brain and 60% of the PUFAs in the retina. Fifty percent of the weight of a neuron’s plasma membrane is composed of DHA. DHA is selectively incorporated into retinal cell membranes and postsynaptic neuronal cell membranes, where it plays important roles in vision and nervous system function. DHA is richly supplied during breastfeeding, and DHA levels are high in breast milk. In humans, DHA is either obtained from the diet or synthesized from eicosapentaenoic acid, (EPA).

Cognitive development

Children that are not exposed to omega-3s in the womb display a significant mental deficit that persists throughout their lives. The human brain requires Omega-3 oils for normal growth and development.
(Left) Human Brain, (Right) Isochrysis Algae with Oil
(Left) Human Brain, (Right) Isochrysis Algae with Oil
Review studies suggest that omega-3s positively affect pre-natal neurodevelopment. However, this cognitive-enhancing effect sometimes diminishes post-natally with maturation. Few studies have examined the cognitive effects of omega-3s through childhood, young adulthood, and middle age. At later ages, multiple studies found evidence suggesting that omega-3s can protect against neurodegeneration and possibly reduce the chance of developing cognitive impairment.
Several variables confound PUFA supplements including heredity, diet, mother’s health, and socioeconomics. Supplement treatments in medical studies typically use 1,000 mg of omega-3 per day.
Another important finding is that too much omega-6 oil (found in vegetable oils, nuts and seeds), in the diet may interfere with the action of omega-3. Omega-6 seems to compete with Omega-3 PUFA for the desaturase enzymes. Therefore, medical researchers suggest that maximum value of omega-3 supplements will occur if the diet minimizes omega-6 intake.

Summary

Omega-3 fatty acids can enhance fetal life and give children a better start in life with stronger brains, eyes, hearts and respiratory systems. Pregnant women and nursing mothers have the opportunity to gift strong cognitive development to their newborns with either several servings of fish per week or the recommended 1,000 mg of omega-3 supplements per day.

CCRES special thanks to  AlgaeIndustryMagazine.com

CROATIAN CENTER of RENEWABLE ENERGY SOURCES (CCRES)
Read More..

Rabu, 23 Maret 2016

CROATIAN CENTER of RENEWABLE ENERGY SOURCES (CCRES)

  special thanks to U.S. Department of Energy | USA.gov


As part of President Obama’s Blueprint for a Secure Energy Future, he directed the Navy, USDA and DOE to collaborate to support commercialization of “drop-in” biofuel substitutes for diesel and jet fuel. Competitively priced drop-in biofuels, he said, will help improve America’s energy security, meeting the fuel needs of U.S. armed forces, as well as the commercial aviation and shipping sectors. The recent announcement of an available $30 million in funding promotes speeding the development of biofuels for military and commercial transportation. The Funding Opportunity Announcement (FOA) is available.

The U.S. Department of Agriculture (USDA), Navy and Department of Energy are announcing $30 million in federal funding to match private investments in commercial-scale advanced drop-in biofuels. The Energy Department is also announcing a total of $32 million in new investments for earlier stage research that will continue to drive technological breakthroughs and additional cost reductions in the industry.

This funding opportunity is made possible through the Defense Production Act (DPA), an authority that dates back to 1950 and has been used to boost industries such as steel, aluminum, titanium, semiconductors, beryllium, and radiation-hardened electronics.

    “…through this DPA effort the nation will be able to harvest an aviation biofuels industry to satisfy the world’s needs, not just our U.S. military.” — USDA Secretary Tom Vilsack

The new funding comprises a two-phased approach, with government and industry sharing in the cost. In Phase 1, applicants will submit a design package and comprehensive business plan for a commercial-scale biorefinery, identify and secure project sites and take additional required steps spelled out in the announcement. Awardees selected to continue into Phase 2 will submit additional information for the construction or retrofit of a biorefinery.

Agencies participating in this initiative will make additional funding requests to Congress to support the initiative, including President Obama’s FY 2013 budget request of $110 million.

“This is an important time for the biofuels industry to step up and show the Department of the Navy how they have developed biofuels that are certified and certifiable for military use,” said USDA Secretary Tom Vilsack. “The ability for U.S. industry to make, create and innovate has never been more important to our national and energy security. I know that through this DPA effort the nation will be able to harvest an aviation biofuels industry to satisfy the world’s needs, not just our U.S. military.”

The Energy Department has also announced new investments in earlier stage biofuels research that complement the commercial-scale efforts announced by the Navy and USDA. Totaling $32 million, these early-stage, pre-commercial investments are the latest steps in the Obama Administration’s efforts to advance biofuels technologies to continue to bring down costs, improve performance, and identify new effective, non-food feedstocks and processing technologies.

“Advanced biofuels are an important part of President Obama’s all-of-the-above strategy to reduce America’s dependence on foreign oil and support American industries and American jobs,” said Secretary Chu. “By pursuing new processes and technologies for producing next-generation biofuels, we are working to accelerate innovation in a critical and growing sector that will help to improve U.S. energy security and protect our air and water.”

The new funding announced by DOE includes $20 million to support innovative pilot-scale and demonstration-scale biorefineries that could produce renewable biofuels that meet military specifications for jet fuel and shipboard diesel using a variety of non-food biomass feedstocks, waste-based materials and algae. These projects may support new plant construction, retrofits on existing U.S. biorefineries or operation at plants ready to begin production at the pilot- or pre-commercial scale. This investment will also help federal and local governments, private developers and industry collect accurate data on the cost of producing fuels made from biomass and waste feedstocks. The full funding solicitation is available.

In addition, the Energy Department also announced $12 million to support up to eight projects focused on researching ways to develop bio-based transportation fuels and products using synthetic biological processing. Synthetic biological processing offers an innovative technique to enable efficient, cost-saving conversion of non-food biomass to biofuels. These projects will develop novel biological systems that can enhance the breakdown of raw biomass feedstocks and assist in converting feedstocks into transportation fuels.

The projects will be led by small businesses, universities, national laboratories and industry and will seek to overcome various technical and scientific barriers to cost-competitive advanced biofuels and bioproducts. The full funding opportunity announcement is available.

CROATIAN CENTER of RENEWABLE ENERGY SOURCES (CCRES)

Read More..

Rabu, 16 Maret 2016

 Capture the Carbon Dioxide

In nature, photosynthesis uses the energy in sunlight to split water into carbon dioxide and hydrogen. A typical plant cell relies on a series of electron carriers, which create a photosynthetic circuit that allows plants to capture the carbon dioxide they need, and then convert it into the biomass that fuels cell growth. At the same time, plants produce hydrogen, a molecule that can be used in a variety of renewable and sustainable fuel technologies, but that is also expensive to produce in large quantities and currently involves non-renewable natural gas reformation.

A photosynthetic organism such as green algae tends to use solar energy to generate either fixed carbon or hydrogen—while this is fine for growth, it is not particularly efficient for making greater quantities of hydrogen. Facing this challenge, NREL researchers wondered if they could find ways to boost the hydrogen-making capacity of photosynthesis. They posed a key question: What controls the partitioning of electrons between these two competing metabolic pathways?

A team from NREL, along with colleagues from the Massachusetts Institute of Technology and Tel Aviv University, set out to answer this question. They hypothesized that they could engineer the process by "rewiring" algaes catalytic circuits, or pathways. To do so, they would replace the normal hydrogen-producing enzyme, hydrogenase (H2ase), with a ferredoxin and hydrogenase fusion protein. They speculated that inserting this kind of a fusion protein into this reaction path could divert more electrons into hydrogen production and push the algae into making more hydrogen and fixing less carbon dioxide. If successful, this engineered photosynthetic circuit could potentially increase efficiencies and thus bring down the price of hydrogen. In its more than 30-year history of innovation, NREL has been a leader in working with green algae for hydrogen and biofuel production, as well as with finding ways to speed renewable fuels to market to help meet the nations clean energy goals. It is this expertise that encouraged MITs Iftach Yacoby to partner with NREL, which enabled the researchers to collaborate on technical innovations such as the CdTe-H2ase.

During NRELs work with green algae, the labs own Senior Scientist Paul King and other researchers worked with hydrogenase enzymes as a key component of the photosynthetic hydrogen production equation. These biological catalysts can convert electrons and protons into hydrogen gas, or convert hydrogen into electrons and protons. For this work, the team chose to use in vitro tests under anaerobic conditions. They were able to demonstrate how the hydrogenase and other enzymes compete to regulate whether algae uses the solar energy it captures through photosynthesis to produce carbon compounds or hydrogen. As they studied these interactions, they were able to devise a procedure to engineer the proteins that compose electron transfer circuits. 

The first element of their strategy was based on their hypothesis that they could have more of the electrons go to hydrogen if they altered the composition to replace hydrogenase with a ferredoxin-hydrogenase fusion. In the anaerobic test tubes, the team confirmed that the photosynthetic circuit can switch from capturing carbon dioxide to producing hydrogen by substituting the fusion. The hydrogen production was carried out in the presence of the CO2 fixation enzyme ferredoxin:NADP-oxidoreductase (FNR). This process is a biological model for using solar power to convert water into hydrogen. The basis for this switch was modeled as two new Fd-hydrogenase circuits (boxes 1 and 2, Figure 2), and a reduced level of FNR activity modeled as a third circuit (box 3, Figure 2). 

King considered these results promising, because they suggest that fusion is an engineering strategy to improve hydrogen production efficiencies, and might be useful in resolving the biochemical mechanisms that control photosynthetic electron transport circuits and product levels from competing pathways. The next phase, already underway, is to introduce the fusion protein into green algae Chlamydomonas and determine if rewiring can take place to improve hydrogen-production efficiencies. Even though this is only one of a number of variables to consider, this strategy has already signaled an avenue to pursue in the drive to reduce the cost of hydrogen fuel and make it cost-competitive for industry.


A diagram showing a series of linked boxes with labels for biological compounds, explaining how photosynthetic electrons support carbon dioxide fixation and hydrogen production.Enlarge image
Photosynthetic electron transport pathways that support carbon dioxide fixation and hydrogen production. Light-activated PSII extracts electrons from water and transfers them, while parallel circuits couple Fd to either FNR for carbon dioxide fixation or hydrogenase production.
Credit: Paul King, NREL
A diagram showing another series of linked boxes with labels depicting the engineering of hydrogen-producing enzyme to create a hydrogen production circuit to increase hydrogen during photosynthesis.Enlarge image
Engineering of the hydrogen-producing enzyme to create an Fd-H2ase fusion changes the composition of the hydrogen production circuit to include both direct (box 1) and indirect (box 2) H2 production modes. The CO2 fixation circuit (box 3) remains open, but operates at a reduced level.
Credit: Paul King, NREL


CCRES special thanks to NREL

NREL is a national laboratory of the U.S. Department of Energy, Office Energy Efficiency and Renewable Energy operated by the Alliance for Substainable Energy, LLC.

CROATIAN CENTER of RENEWABLE ENERGY SOURCES ( CCRES)
Read More..